Factor
\left(3a-4\right)\left(2a+5\right)
Evaluate
\left(3a-4\right)\left(2a+5\right)
Share
Copied to clipboard
p+q=7 pq=6\left(-20\right)=-120
Factor the expression by grouping. First, the expression needs to be rewritten as 6a^{2}+pa+qa-20. To find p and q, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
p=-8 q=15
The solution is the pair that gives sum 7.
\left(6a^{2}-8a\right)+\left(15a-20\right)
Rewrite 6a^{2}+7a-20 as \left(6a^{2}-8a\right)+\left(15a-20\right).
2a\left(3a-4\right)+5\left(3a-4\right)
Factor out 2a in the first and 5 in the second group.
\left(3a-4\right)\left(2a+5\right)
Factor out common term 3a-4 by using distributive property.
6a^{2}+7a-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-7±\sqrt{7^{2}-4\times 6\left(-20\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-7±\sqrt{49-4\times 6\left(-20\right)}}{2\times 6}
Square 7.
a=\frac{-7±\sqrt{49-24\left(-20\right)}}{2\times 6}
Multiply -4 times 6.
a=\frac{-7±\sqrt{49+480}}{2\times 6}
Multiply -24 times -20.
a=\frac{-7±\sqrt{529}}{2\times 6}
Add 49 to 480.
a=\frac{-7±23}{2\times 6}
Take the square root of 529.
a=\frac{-7±23}{12}
Multiply 2 times 6.
a=\frac{16}{12}
Now solve the equation a=\frac{-7±23}{12} when ± is plus. Add -7 to 23.
a=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
a=-\frac{30}{12}
Now solve the equation a=\frac{-7±23}{12} when ± is minus. Subtract 23 from -7.
a=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
6a^{2}+7a-20=6\left(a-\frac{4}{3}\right)\left(a-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{3} for x_{1} and -\frac{5}{2} for x_{2}.
6a^{2}+7a-20=6\left(a-\frac{4}{3}\right)\left(a+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6a^{2}+7a-20=6\times \frac{3a-4}{3}\left(a+\frac{5}{2}\right)
Subtract \frac{4}{3} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6a^{2}+7a-20=6\times \frac{3a-4}{3}\times \frac{2a+5}{2}
Add \frac{5}{2} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6a^{2}+7a-20=6\times \frac{\left(3a-4\right)\left(2a+5\right)}{3\times 2}
Multiply \frac{3a-4}{3} times \frac{2a+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6a^{2}+7a-20=6\times \frac{\left(3a-4\right)\left(2a+5\right)}{6}
Multiply 3 times 2.
6a^{2}+7a-20=\left(3a-4\right)\left(2a+5\right)
Cancel out 6, the greatest common factor in 6 and 6.
x ^ 2 +\frac{7}{6}x -\frac{10}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 6
r + s = -\frac{7}{6} rs = -\frac{10}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{12} - u s = -\frac{7}{12} + u
Two numbers r and s sum up to -\frac{7}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{7}{6} = -\frac{7}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{12} - u) (-\frac{7}{12} + u) = -\frac{10}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{10}{3}
\frac{49}{144} - u^2 = -\frac{10}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{10}{3}-\frac{49}{144} = -\frac{529}{144}
Simplify the expression by subtracting \frac{49}{144} on both sides
u^2 = \frac{529}{144} u = \pm\sqrt{\frac{529}{144}} = \pm \frac{23}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{12} - \frac{23}{12} = -2.500 s = -\frac{7}{12} + \frac{23}{12} = 1.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}