Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(a+3a^{2}\right)
Factor out 6.
a\left(1+3a\right)
Consider a+3a^{2}. Factor out a.
6a\left(3a+1\right)
Rewrite the complete factored expression.
18a^{2}+6a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-6±\sqrt{6^{2}}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-6±6}{2\times 18}
Take the square root of 6^{2}.
a=\frac{-6±6}{36}
Multiply 2 times 18.
a=\frac{0}{36}
Now solve the equation a=\frac{-6±6}{36} when ± is plus. Add -6 to 6.
a=0
Divide 0 by 36.
a=-\frac{12}{36}
Now solve the equation a=\frac{-6±6}{36} when ± is minus. Subtract 6 from -6.
a=-\frac{1}{3}
Reduce the fraction \frac{-12}{36} to lowest terms by extracting and canceling out 12.
18a^{2}+6a=18a\left(a-\left(-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{3} for x_{2}.
18a^{2}+6a=18a\left(a+\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
18a^{2}+6a=18a\times \frac{3a+1}{3}
Add \frac{1}{3} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
18a^{2}+6a=6a\left(3a+1\right)
Cancel out 3, the greatest common factor in 18 and 3.