Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}-7x+6
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=-5\times 6=-30
Factor the expression by grouping. First, the expression needs to be rewritten as -5x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=3 b=-10
The solution is the pair that gives sum -7.
\left(-5x^{2}+3x\right)+\left(-10x+6\right)
Rewrite -5x^{2}-7x+6 as \left(-5x^{2}+3x\right)+\left(-10x+6\right).
-x\left(5x-3\right)-2\left(5x-3\right)
Factor out -x in the first and -2 in the second group.
\left(5x-3\right)\left(-x-2\right)
Factor out common term 5x-3 by using distributive property.
-5x^{2}-7x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-5\right)\times 6}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-5\right)\times 6}}{2\left(-5\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+20\times 6}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-7\right)±\sqrt{49+120}}{2\left(-5\right)}
Multiply 20 times 6.
x=\frac{-\left(-7\right)±\sqrt{169}}{2\left(-5\right)}
Add 49 to 120.
x=\frac{-\left(-7\right)±13}{2\left(-5\right)}
Take the square root of 169.
x=\frac{7±13}{2\left(-5\right)}
The opposite of -7 is 7.
x=\frac{7±13}{-10}
Multiply 2 times -5.
x=\frac{20}{-10}
Now solve the equation x=\frac{7±13}{-10} when ± is plus. Add 7 to 13.
x=-2
Divide 20 by -10.
x=-\frac{6}{-10}
Now solve the equation x=\frac{7±13}{-10} when ± is minus. Subtract 13 from 7.
x=\frac{3}{5}
Reduce the fraction \frac{-6}{-10} to lowest terms by extracting and canceling out 2.
-5x^{2}-7x+6=-5\left(x-\left(-2\right)\right)\left(x-\frac{3}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and \frac{3}{5} for x_{2}.
-5x^{2}-7x+6=-5\left(x+2\right)\left(x-\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-5x^{2}-7x+6=-5\left(x+2\right)\times \frac{-5x+3}{-5}
Subtract \frac{3}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-5x^{2}-7x+6=\left(x+2\right)\left(-5x+3\right)
Cancel out 5, the greatest common factor in -5 and 5.