Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-3x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)\times 6}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)\times 6}}{2\left(-6\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+24\times 6}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-3\right)±\sqrt{9+144}}{2\left(-6\right)}
Multiply 24 times 6.
x=\frac{-\left(-3\right)±\sqrt{153}}{2\left(-6\right)}
Add 9 to 144.
x=\frac{-\left(-3\right)±3\sqrt{17}}{2\left(-6\right)}
Take the square root of 153.
x=\frac{3±3\sqrt{17}}{2\left(-6\right)}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{17}}{-12}
Multiply 2 times -6.
x=\frac{3\sqrt{17}+3}{-12}
Now solve the equation x=\frac{3±3\sqrt{17}}{-12} when ± is plus. Add 3 to 3\sqrt{17}.
x=\frac{-\sqrt{17}-1}{4}
Divide 3+3\sqrt{17} by -12.
x=\frac{3-3\sqrt{17}}{-12}
Now solve the equation x=\frac{3±3\sqrt{17}}{-12} when ± is minus. Subtract 3\sqrt{17} from 3.
x=\frac{\sqrt{17}-1}{4}
Divide 3-3\sqrt{17} by -12.
-6x^{2}-3x+6=-6\left(x-\frac{-\sqrt{17}-1}{4}\right)\left(x-\frac{\sqrt{17}-1}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{17}}{4} for x_{1} and \frac{-1+\sqrt{17}}{4} for x_{2}.