Evaluate (complex solution)
true
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
6-8+20x=6-8+20x\text{ and }6-8+20x=-2+20x
Use the distributive property to multiply -4 by 2-5x.
-2+20x=6-8+20x\text{ and }6-8+20x=-2+20x
Subtract 8 from 6 to get -2.
-2+20x=-2+20x\text{ and }6-8+20x=-2+20x
Subtract 8 from 6 to get -2.
-2+20x=-2+20x\text{ and }-2+20x=-2+20x
Subtract 8 from 6 to get -2.
-2+20x-20x=-2\text{ and }-2+20x=-2+20x
Subtract 20x from both sides.
-2=-2\text{ and }-2+20x=-2+20x
Combine 20x and -20x to get 0.
\text{true}\text{ and }-2+20x=-2+20x
Compare -2 and -2.
\text{true}\text{ and }-2+20x-20x=-2
Subtract 20x from both sides.
\text{true}\text{ and }-2=-2
Combine 20x and -20x to get 0.
\text{true}\text{ and }\text{true}
Compare -2 and -2.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}