Solve for b
b=-\frac{cx}{6}+\frac{c^{2}}{6}+x
Solve for c (complex solution)
c=\frac{-\sqrt{x^{2}-24x+24b}+x}{2}
c=\frac{\sqrt{x^{2}-24x+24b}+x}{2}
Solve for c
c=\frac{-\sqrt{x^{2}-24x+24b}+x}{2}
c=\frac{\sqrt{x^{2}-24x+24b}+x}{2}\text{, }b\geq -\frac{x^{2}}{24}+x
Graph
Share
Copied to clipboard
6b-6x=c\left(c-x\right)
Use the distributive property to multiply 6 by b-x.
6b-6x=c^{2}-cx
Use the distributive property to multiply c by c-x.
6b=c^{2}-cx+6x
Add 6x to both sides.
6b=c^{2}+6x-cx
The equation is in standard form.
\frac{6b}{6}=\frac{c^{2}+6x-cx}{6}
Divide both sides by 6.
b=\frac{c^{2}+6x-cx}{6}
Dividing by 6 undoes the multiplication by 6.
b=-\frac{cx}{6}+\frac{c^{2}}{6}+x
Divide c^{2}-cx+6x by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}