Solve for a
a=\frac{5b}{4}
Solve for b
b=\frac{4a}{5}
Share
Copied to clipboard
6a+6b=10a+b
Use the distributive property to multiply 6 by a+b.
6a+6b-10a=b
Subtract 10a from both sides.
-4a+6b=b
Combine 6a and -10a to get -4a.
-4a=b-6b
Subtract 6b from both sides.
-4a=-5b
Combine b and -6b to get -5b.
\frac{-4a}{-4}=-\frac{5b}{-4}
Divide both sides by -4.
a=-\frac{5b}{-4}
Dividing by -4 undoes the multiplication by -4.
a=\frac{5b}{4}
Divide -5b by -4.
6a+6b=10a+b
Use the distributive property to multiply 6 by a+b.
6a+6b-b=10a
Subtract b from both sides.
6a+5b=10a
Combine 6b and -b to get 5b.
5b=10a-6a
Subtract 6a from both sides.
5b=4a
Combine 10a and -6a to get 4a.
\frac{5b}{5}=\frac{4a}{5}
Divide both sides by 5.
b=\frac{4a}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}