Solve for a
a>-1
Share
Copied to clipboard
6-30a<2a+38
Use the distributive property to multiply 6 by 1-5a.
6-30a-2a<38
Subtract 2a from both sides.
6-32a<38
Combine -30a and -2a to get -32a.
-32a<38-6
Subtract 6 from both sides.
-32a<32
Subtract 6 from 38 to get 32.
a>\frac{32}{-32}
Divide both sides by -32. Since -32 is negative, the inequality direction is changed.
a>-1
Divide 32 by -32 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}