Evaluate
m-n
Expand
m-n
Share
Copied to clipboard
6\left(-\frac{4}{3}\right)m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Use the distributive property to multiply 6 by -\frac{4}{3}m+\frac{3}{2}n.
\frac{6\left(-4\right)}{3}m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Express 6\left(-\frac{4}{3}\right) as a single fraction.
\frac{-24}{3}m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Multiply 6 and -4 to get -24.
-8m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Divide -24 by 3 to get -8.
-8m+\frac{6\times 3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Express 6\times \frac{3}{2} as a single fraction.
-8m+\frac{18}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Multiply 6 and 3 to get 18.
-8m+9n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Divide 18 by 2 to get 9.
-8m+9n-15\times \frac{2}{3}n-15\left(-\frac{3}{5}\right)m
Use the distributive property to multiply -15 by \frac{2}{3}n-\frac{3}{5}m.
-8m+9n+\frac{-15\times 2}{3}n-15\left(-\frac{3}{5}\right)m
Express -15\times \frac{2}{3} as a single fraction.
-8m+9n+\frac{-30}{3}n-15\left(-\frac{3}{5}\right)m
Multiply -15 and 2 to get -30.
-8m+9n-10n-15\left(-\frac{3}{5}\right)m
Divide -30 by 3 to get -10.
-8m+9n-10n+\frac{-15\left(-3\right)}{5}m
Express -15\left(-\frac{3}{5}\right) as a single fraction.
-8m+9n-10n+\frac{45}{5}m
Multiply -15 and -3 to get 45.
-8m+9n-10n+9m
Divide 45 by 5 to get 9.
-8m-n+9m
Combine 9n and -10n to get -n.
m-n
Combine -8m and 9m to get m.
6\left(-\frac{4}{3}\right)m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Use the distributive property to multiply 6 by -\frac{4}{3}m+\frac{3}{2}n.
\frac{6\left(-4\right)}{3}m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Express 6\left(-\frac{4}{3}\right) as a single fraction.
\frac{-24}{3}m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Multiply 6 and -4 to get -24.
-8m+6\times \frac{3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Divide -24 by 3 to get -8.
-8m+\frac{6\times 3}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Express 6\times \frac{3}{2} as a single fraction.
-8m+\frac{18}{2}n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Multiply 6 and 3 to get 18.
-8m+9n-15\left(\frac{2}{3}n-\frac{3}{5}m\right)
Divide 18 by 2 to get 9.
-8m+9n-15\times \frac{2}{3}n-15\left(-\frac{3}{5}\right)m
Use the distributive property to multiply -15 by \frac{2}{3}n-\frac{3}{5}m.
-8m+9n+\frac{-15\times 2}{3}n-15\left(-\frac{3}{5}\right)m
Express -15\times \frac{2}{3} as a single fraction.
-8m+9n+\frac{-30}{3}n-15\left(-\frac{3}{5}\right)m
Multiply -15 and 2 to get -30.
-8m+9n-10n-15\left(-\frac{3}{5}\right)m
Divide -30 by 3 to get -10.
-8m+9n-10n+\frac{-15\left(-3\right)}{5}m
Express -15\left(-\frac{3}{5}\right) as a single fraction.
-8m+9n-10n+\frac{45}{5}m
Multiply -15 and -3 to get 45.
-8m+9n-10n+9m
Divide 45 by 5 to get 9.
-8m-n+9m
Combine 9n and -10n to get -n.
m-n
Combine -8m and 9m to get m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}