Solve for x
x\geq \frac{21}{5}
Graph
Share
Copied to clipboard
96\left(\frac{8+1}{8}-\frac{2x-3}{16}\right)\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Multiply both sides of the equation by 16, the least common multiple of 8,16,4. Since 16 is positive, the inequality direction remains the same.
96\left(\frac{9}{8}-\frac{2x-3}{16}\right)\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Add 8 and 1 to get 9.
96\left(\frac{9\times 2}{16}-\frac{2x-3}{16}\right)\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 16 is 16. Multiply \frac{9}{8} times \frac{2}{2}.
96\times \frac{9\times 2-\left(2x-3\right)}{16}\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Since \frac{9\times 2}{16} and \frac{2x-3}{16} have the same denominator, subtract them by subtracting their numerators.
96\times \frac{18-2x+3}{16}\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Do the multiplications in 9\times 2-\left(2x-3\right).
96\times \frac{21-2x}{16}\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Combine like terms in 18-2x+3.
6\left(21-2x\right)\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Cancel out 16, the greatest common factor in 96 and 16.
126-12x\leq 48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Use the distributive property to multiply 6 by 21-2x.
126-12x\leq 48\times \frac{3}{4}x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Use the distributive property to multiply 48 by \frac{3}{4}x-\frac{1}{4}.
126-12x\leq \frac{48\times 3}{4}x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Express 48\times \frac{3}{4} as a single fraction.
126-12x\leq \frac{144}{4}x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Multiply 48 and 3 to get 144.
126-12x\leq 36x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Divide 144 by 4 to get 36.
126-12x\leq 36x+\frac{48\left(-1\right)}{4}-6\left(3x-2\right)
Express 48\left(-\frac{1}{4}\right) as a single fraction.
126-12x\leq 36x+\frac{-48}{4}-6\left(3x-2\right)
Multiply 48 and -1 to get -48.
126-12x\leq 36x-12-6\left(3x-2\right)
Divide -48 by 4 to get -12.
126-12x\leq 36x-12-18x+12
Use the distributive property to multiply -6 by 3x-2.
126-12x\leq 18x-12+12
Combine 36x and -18x to get 18x.
126-12x\leq 18x
Add -12 and 12 to get 0.
126-12x-18x\leq 0
Subtract 18x from both sides.
126-30x\leq 0
Combine -12x and -18x to get -30x.
-30x\leq -126
Subtract 126 from both sides. Anything subtracted from zero gives its negation.
x\geq \frac{-126}{-30}
Divide both sides by -30. Since -30 is negative, the inequality direction is changed.
x\geq \frac{21}{5}
Reduce the fraction \frac{-126}{-30} to lowest terms by extracting and canceling out -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}