Evaluate
\frac{y}{2}
Expand
\frac{y}{2}
Share
Copied to clipboard
6\times \frac{2}{3}x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Use the distributive property to multiply 6 by \frac{2}{3}x-\frac{y}{4}.
\frac{6\times 2}{3}x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Express 6\times \frac{2}{3} as a single fraction.
\frac{12}{3}x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Multiply 6 and 2 to get 12.
4x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Divide 12 by 3 to get 4.
4x+\frac{-6y}{4}-2\left(2x-y\right)
Express 6\left(-\frac{y}{4}\right) as a single fraction.
\frac{4\times 4x}{4}+\frac{-6y}{4}-2\left(2x-y\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4x times \frac{4}{4}.
\frac{4\times 4x-6y}{4}-2\left(2x-y\right)
Since \frac{4\times 4x}{4} and \frac{-6y}{4} have the same denominator, add them by adding their numerators.
\frac{16x-6y}{4}-2\left(2x-y\right)
Do the multiplications in 4\times 4x-6y.
\frac{16x-6y}{4}-4x+2y
Use the distributive property to multiply -2 by 2x-y.
\frac{16x-6y}{4}+\frac{4\left(-4x+2y\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4x+2y times \frac{4}{4}.
\frac{16x-6y+4\left(-4x+2y\right)}{4}
Since \frac{16x-6y}{4} and \frac{4\left(-4x+2y\right)}{4} have the same denominator, add them by adding their numerators.
\frac{16x-6y-16x+8y}{4}
Do the multiplications in 16x-6y+4\left(-4x+2y\right).
\frac{2y}{4}
Combine like terms in 16x-6y-16x+8y.
\frac{1}{2}y
Divide 2y by 4 to get \frac{1}{2}y.
6\times \frac{2}{3}x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Use the distributive property to multiply 6 by \frac{2}{3}x-\frac{y}{4}.
\frac{6\times 2}{3}x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Express 6\times \frac{2}{3} as a single fraction.
\frac{12}{3}x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Multiply 6 and 2 to get 12.
4x+6\left(-\frac{y}{4}\right)-2\left(2x-y\right)
Divide 12 by 3 to get 4.
4x+\frac{-6y}{4}-2\left(2x-y\right)
Express 6\left(-\frac{y}{4}\right) as a single fraction.
\frac{4\times 4x}{4}+\frac{-6y}{4}-2\left(2x-y\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4x times \frac{4}{4}.
\frac{4\times 4x-6y}{4}-2\left(2x-y\right)
Since \frac{4\times 4x}{4} and \frac{-6y}{4} have the same denominator, add them by adding their numerators.
\frac{16x-6y}{4}-2\left(2x-y\right)
Do the multiplications in 4\times 4x-6y.
\frac{16x-6y}{4}-4x+2y
Use the distributive property to multiply -2 by 2x-y.
\frac{16x-6y}{4}+\frac{4\left(-4x+2y\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4x+2y times \frac{4}{4}.
\frac{16x-6y+4\left(-4x+2y\right)}{4}
Since \frac{16x-6y}{4} and \frac{4\left(-4x+2y\right)}{4} have the same denominator, add them by adding their numerators.
\frac{16x-6y-16x+8y}{4}
Do the multiplications in 16x-6y+4\left(-4x+2y\right).
\frac{2y}{4}
Combine like terms in 16x-6y-16x+8y.
\frac{1}{2}y
Divide 2y by 4 to get \frac{1}{2}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}