Factor
\left(3y-2\right)\left(2y+9\right)
Evaluate
\left(3y-2\right)\left(2y+9\right)
Graph
Share
Copied to clipboard
a+b=23 ab=6\left(-18\right)=-108
Factor the expression by grouping. First, the expression needs to be rewritten as 6y^{2}+ay+by-18. To find a and b, set up a system to be solved.
-1,108 -2,54 -3,36 -4,27 -6,18 -9,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -108.
-1+108=107 -2+54=52 -3+36=33 -4+27=23 -6+18=12 -9+12=3
Calculate the sum for each pair.
a=-4 b=27
The solution is the pair that gives sum 23.
\left(6y^{2}-4y\right)+\left(27y-18\right)
Rewrite 6y^{2}+23y-18 as \left(6y^{2}-4y\right)+\left(27y-18\right).
2y\left(3y-2\right)+9\left(3y-2\right)
Factor out 2y in the first and 9 in the second group.
\left(3y-2\right)\left(2y+9\right)
Factor out common term 3y-2 by using distributive property.
6y^{2}+23y-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-23±\sqrt{23^{2}-4\times 6\left(-18\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-23±\sqrt{529-4\times 6\left(-18\right)}}{2\times 6}
Square 23.
y=\frac{-23±\sqrt{529-24\left(-18\right)}}{2\times 6}
Multiply -4 times 6.
y=\frac{-23±\sqrt{529+432}}{2\times 6}
Multiply -24 times -18.
y=\frac{-23±\sqrt{961}}{2\times 6}
Add 529 to 432.
y=\frac{-23±31}{2\times 6}
Take the square root of 961.
y=\frac{-23±31}{12}
Multiply 2 times 6.
y=\frac{8}{12}
Now solve the equation y=\frac{-23±31}{12} when ± is plus. Add -23 to 31.
y=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
y=-\frac{54}{12}
Now solve the equation y=\frac{-23±31}{12} when ± is minus. Subtract 31 from -23.
y=-\frac{9}{2}
Reduce the fraction \frac{-54}{12} to lowest terms by extracting and canceling out 6.
6y^{2}+23y-18=6\left(y-\frac{2}{3}\right)\left(y-\left(-\frac{9}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{9}{2} for x_{2}.
6y^{2}+23y-18=6\left(y-\frac{2}{3}\right)\left(y+\frac{9}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6y^{2}+23y-18=6\times \frac{3y-2}{3}\left(y+\frac{9}{2}\right)
Subtract \frac{2}{3} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6y^{2}+23y-18=6\times \frac{3y-2}{3}\times \frac{2y+9}{2}
Add \frac{9}{2} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6y^{2}+23y-18=6\times \frac{\left(3y-2\right)\left(2y+9\right)}{3\times 2}
Multiply \frac{3y-2}{3} times \frac{2y+9}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6y^{2}+23y-18=6\times \frac{\left(3y-2\right)\left(2y+9\right)}{6}
Multiply 3 times 2.
6y^{2}+23y-18=\left(3y-2\right)\left(2y+9\right)
Cancel out 6, the greatest common factor in 6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}