Factor
\left(3x-2\right)\left(2x+1\right)
Evaluate
\left(3x-2\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
a+b=-1 ab=6\left(-2\right)=-12
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-4 b=3
The solution is the pair that gives sum -1.
\left(6x^{2}-4x\right)+\left(3x-2\right)
Rewrite 6x^{2}-x-2 as \left(6x^{2}-4x\right)+\left(3x-2\right).
2x\left(3x-2\right)+3x-2
Factor out 2x in 6x^{2}-4x.
\left(3x-2\right)\left(2x+1\right)
Factor out common term 3x-2 by using distributive property.
6x^{2}-x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 6}
Multiply -24 times -2.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 6}
Add 1 to 48.
x=\frac{-\left(-1\right)±7}{2\times 6}
Take the square root of 49.
x=\frac{1±7}{2\times 6}
The opposite of -1 is 1.
x=\frac{1±7}{12}
Multiply 2 times 6.
x=\frac{8}{12}
Now solve the equation x=\frac{1±7}{12} when ± is plus. Add 1 to 7.
x=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{6}{12}
Now solve the equation x=\frac{1±7}{12} when ± is minus. Subtract 7 from 1.
x=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
6x^{2}-x-2=6\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{1}{2} for x_{2}.
6x^{2}-x-2=6\left(x-\frac{2}{3}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}-x-2=6\times \frac{3x-2}{3}\left(x+\frac{1}{2}\right)
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-x-2=6\times \frac{3x-2}{3}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-x-2=6\times \frac{\left(3x-2\right)\left(2x+1\right)}{3\times 2}
Multiply \frac{3x-2}{3} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6x^{2}-x-2=6\times \frac{\left(3x-2\right)\left(2x+1\right)}{6}
Multiply 3 times 2.
6x^{2}-x-2=\left(3x-2\right)\left(2x+1\right)
Cancel out 6, the greatest common factor in 6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}