Solve for x
x=-4
x = \frac{16}{3} = 5\frac{1}{3} \approx 5.333333333
Graph
Share
Copied to clipboard
6x^{2}-8x-128=0
Subtract 128 from both sides.
3x^{2}-4x-64=0
Divide both sides by 2.
a+b=-4 ab=3\left(-64\right)=-192
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-64. To find a and b, set up a system to be solved.
1,-192 2,-96 3,-64 4,-48 6,-32 8,-24 12,-16
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -192.
1-192=-191 2-96=-94 3-64=-61 4-48=-44 6-32=-26 8-24=-16 12-16=-4
Calculate the sum for each pair.
a=-16 b=12
The solution is the pair that gives sum -4.
\left(3x^{2}-16x\right)+\left(12x-64\right)
Rewrite 3x^{2}-4x-64 as \left(3x^{2}-16x\right)+\left(12x-64\right).
x\left(3x-16\right)+4\left(3x-16\right)
Factor out x in the first and 4 in the second group.
\left(3x-16\right)\left(x+4\right)
Factor out common term 3x-16 by using distributive property.
x=\frac{16}{3} x=-4
To find equation solutions, solve 3x-16=0 and x+4=0.
6x^{2}-8x=128
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}-8x-128=128-128
Subtract 128 from both sides of the equation.
6x^{2}-8x-128=0
Subtracting 128 from itself leaves 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 6\left(-128\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -8 for b, and -128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 6\left(-128\right)}}{2\times 6}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-24\left(-128\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-8\right)±\sqrt{64+3072}}{2\times 6}
Multiply -24 times -128.
x=\frac{-\left(-8\right)±\sqrt{3136}}{2\times 6}
Add 64 to 3072.
x=\frac{-\left(-8\right)±56}{2\times 6}
Take the square root of 3136.
x=\frac{8±56}{2\times 6}
The opposite of -8 is 8.
x=\frac{8±56}{12}
Multiply 2 times 6.
x=\frac{64}{12}
Now solve the equation x=\frac{8±56}{12} when ± is plus. Add 8 to 56.
x=\frac{16}{3}
Reduce the fraction \frac{64}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{48}{12}
Now solve the equation x=\frac{8±56}{12} when ± is minus. Subtract 56 from 8.
x=-4
Divide -48 by 12.
x=\frac{16}{3} x=-4
The equation is now solved.
6x^{2}-8x=128
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-8x}{6}=\frac{128}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{8}{6}\right)x=\frac{128}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{4}{3}x=\frac{128}{6}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{3}x=\frac{64}{3}
Reduce the fraction \frac{128}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{64}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{64}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{196}{9}
Add \frac{64}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=\frac{196}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{196}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{14}{3} x-\frac{2}{3}=-\frac{14}{3}
Simplify.
x=\frac{16}{3} x=-4
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}