Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-7 ab=6\left(-20\right)=-120
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Calculate the sum for each pair.
a=-15 b=8
The solution is the pair that gives sum -7.
\left(6x^{2}-15x\right)+\left(8x-20\right)
Rewrite 6x^{2}-7x-20 as \left(6x^{2}-15x\right)+\left(8x-20\right).
3x\left(2x-5\right)+4\left(2x-5\right)
Factor out 3x in the first and 4 in the second group.
\left(2x-5\right)\left(3x+4\right)
Factor out common term 2x-5 by using distributive property.
6x^{2}-7x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-20\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-20\right)}}{2\times 6}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-20\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-7\right)±\sqrt{49+480}}{2\times 6}
Multiply -24 times -20.
x=\frac{-\left(-7\right)±\sqrt{529}}{2\times 6}
Add 49 to 480.
x=\frac{-\left(-7\right)±23}{2\times 6}
Take the square root of 529.
x=\frac{7±23}{2\times 6}
The opposite of -7 is 7.
x=\frac{7±23}{12}
Multiply 2 times 6.
x=\frac{30}{12}
Now solve the equation x=\frac{7±23}{12} when ± is plus. Add 7 to 23.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{16}{12}
Now solve the equation x=\frac{7±23}{12} when ± is minus. Subtract 23 from 7.
x=-\frac{4}{3}
Reduce the fraction \frac{-16}{12} to lowest terms by extracting and canceling out 4.
6x^{2}-7x-20=6\left(x-\frac{5}{2}\right)\left(x-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and -\frac{4}{3} for x_{2}.
6x^{2}-7x-20=6\left(x-\frac{5}{2}\right)\left(x+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}-7x-20=6\times \frac{2x-5}{2}\left(x+\frac{4}{3}\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-7x-20=6\times \frac{2x-5}{2}\times \frac{3x+4}{3}
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-7x-20=6\times \frac{\left(2x-5\right)\left(3x+4\right)}{2\times 3}
Multiply \frac{2x-5}{2} times \frac{3x+4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6x^{2}-7x-20=6\times \frac{\left(2x-5\right)\left(3x+4\right)}{6}
Multiply 2 times 3.
6x^{2}-7x-20=\left(2x-5\right)\left(3x+4\right)
Cancel out 6, the greatest common factor in 6 and 6.