Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-6x-32=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6\left(-32\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6\left(-32\right)}}{2\times 6}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-24\left(-32\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-6\right)±\sqrt{36+768}}{2\times 6}
Multiply -24 times -32.
x=\frac{-\left(-6\right)±\sqrt{804}}{2\times 6}
Add 36 to 768.
x=\frac{-\left(-6\right)±2\sqrt{201}}{2\times 6}
Take the square root of 804.
x=\frac{6±2\sqrt{201}}{2\times 6}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{201}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{201}+6}{12}
Now solve the equation x=\frac{6±2\sqrt{201}}{12} when ± is plus. Add 6 to 2\sqrt{201}.
x=\frac{\sqrt{201}}{6}+\frac{1}{2}
Divide 6+2\sqrt{201} by 12.
x=\frac{6-2\sqrt{201}}{12}
Now solve the equation x=\frac{6±2\sqrt{201}}{12} when ± is minus. Subtract 2\sqrt{201} from 6.
x=-\frac{\sqrt{201}}{6}+\frac{1}{2}
Divide 6-2\sqrt{201} by 12.
6x^{2}-6x-32=6\left(x-\left(\frac{\sqrt{201}}{6}+\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{201}}{6}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}+\frac{\sqrt{201}}{6} for x_{1} and \frac{1}{2}-\frac{\sqrt{201}}{6} for x_{2}.