Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-5x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-12\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -5 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-12\right)}}{2\times 6}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-12\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-5\right)±\sqrt{25+288}}{2\times 6}
Multiply -24 times -12.
x=\frac{-\left(-5\right)±\sqrt{313}}{2\times 6}
Add 25 to 288.
x=\frac{5±\sqrt{313}}{2\times 6}
The opposite of -5 is 5.
x=\frac{5±\sqrt{313}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{313}+5}{12}
Now solve the equation x=\frac{5±\sqrt{313}}{12} when ± is plus. Add 5 to \sqrt{313}.
x=\frac{5-\sqrt{313}}{12}
Now solve the equation x=\frac{5±\sqrt{313}}{12} when ± is minus. Subtract \sqrt{313} from 5.
x=\frac{\sqrt{313}+5}{12} x=\frac{5-\sqrt{313}}{12}
The equation is now solved.
6x^{2}-5x-12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}-5x-12-\left(-12\right)=-\left(-12\right)
Add 12 to both sides of the equation.
6x^{2}-5x=-\left(-12\right)
Subtracting -12 from itself leaves 0.
6x^{2}-5x=12
Subtract -12 from 0.
\frac{6x^{2}-5x}{6}=\frac{12}{6}
Divide both sides by 6.
x^{2}-\frac{5}{6}x=\frac{12}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{5}{6}x=2
Divide 12 by 6.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=2+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{6}x+\frac{25}{144}=2+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{313}{144}
Add 2 to \frac{25}{144}.
\left(x-\frac{5}{12}\right)^{2}=\frac{313}{144}
Factor x^{2}-\frac{5}{6}x+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{313}{144}}
Take the square root of both sides of the equation.
x-\frac{5}{12}=\frac{\sqrt{313}}{12} x-\frac{5}{12}=-\frac{\sqrt{313}}{12}
Simplify.
x=\frac{\sqrt{313}+5}{12} x=\frac{5-\sqrt{313}}{12}
Add \frac{5}{12} to both sides of the equation.