Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-57x+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-57\right)±\sqrt{\left(-57\right)^{2}-4\times 6\times 45}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-57\right)±\sqrt{3249-4\times 6\times 45}}{2\times 6}
Square -57.
x=\frac{-\left(-57\right)±\sqrt{3249-24\times 45}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-57\right)±\sqrt{3249-1080}}{2\times 6}
Multiply -24 times 45.
x=\frac{-\left(-57\right)±\sqrt{2169}}{2\times 6}
Add 3249 to -1080.
x=\frac{-\left(-57\right)±3\sqrt{241}}{2\times 6}
Take the square root of 2169.
x=\frac{57±3\sqrt{241}}{2\times 6}
The opposite of -57 is 57.
x=\frac{57±3\sqrt{241}}{12}
Multiply 2 times 6.
x=\frac{3\sqrt{241}+57}{12}
Now solve the equation x=\frac{57±3\sqrt{241}}{12} when ± is plus. Add 57 to 3\sqrt{241}.
x=\frac{\sqrt{241}+19}{4}
Divide 57+3\sqrt{241} by 12.
x=\frac{57-3\sqrt{241}}{12}
Now solve the equation x=\frac{57±3\sqrt{241}}{12} when ± is minus. Subtract 3\sqrt{241} from 57.
x=\frac{19-\sqrt{241}}{4}
Divide 57-3\sqrt{241} by 12.
6x^{2}-57x+45=6\left(x-\frac{\sqrt{241}+19}{4}\right)\left(x-\frac{19-\sqrt{241}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{19+\sqrt{241}}{4} for x_{1} and \frac{19-\sqrt{241}}{4} for x_{2}.