Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-3x-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-36\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-36\right)}}{2\times 6}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\left(-36\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-3\right)±\sqrt{9+864}}{2\times 6}
Multiply -24 times -36.
x=\frac{-\left(-3\right)±\sqrt{873}}{2\times 6}
Add 9 to 864.
x=\frac{-\left(-3\right)±3\sqrt{97}}{2\times 6}
Take the square root of 873.
x=\frac{3±3\sqrt{97}}{2\times 6}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{97}}{12}
Multiply 2 times 6.
x=\frac{3\sqrt{97}+3}{12}
Now solve the equation x=\frac{3±3\sqrt{97}}{12} when ± is plus. Add 3 to 3\sqrt{97}.
x=\frac{\sqrt{97}+1}{4}
Divide 3+3\sqrt{97} by 12.
x=\frac{3-3\sqrt{97}}{12}
Now solve the equation x=\frac{3±3\sqrt{97}}{12} when ± is minus. Subtract 3\sqrt{97} from 3.
x=\frac{1-\sqrt{97}}{4}
Divide 3-3\sqrt{97} by 12.
6x^{2}-3x-36=6\left(x-\frac{\sqrt{97}+1}{4}\right)\left(x-\frac{1-\sqrt{97}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{97}}{4} for x_{1} and \frac{1-\sqrt{97}}{4} for x_{2}.