Factor
3\left(x-1\right)\left(2x+1\right)
Evaluate
3\left(x-1\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
3\left(2x^{2}-x-1\right)
Factor out 3.
a+b=-1 ab=2\left(-1\right)=-2
Consider 2x^{2}-x-1. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(2x^{2}-2x\right)+\left(x-1\right)
Rewrite 2x^{2}-x-1 as \left(2x^{2}-2x\right)+\left(x-1\right).
2x\left(x-1\right)+x-1
Factor out 2x in 2x^{2}-2x.
\left(x-1\right)\left(2x+1\right)
Factor out common term x-1 by using distributive property.
3\left(x-1\right)\left(2x+1\right)
Rewrite the complete factored expression.
6x^{2}-3x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-3\right)}}{2\times 6}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 6}
Multiply -24 times -3.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 6}
Add 9 to 72.
x=\frac{-\left(-3\right)±9}{2\times 6}
Take the square root of 81.
x=\frac{3±9}{2\times 6}
The opposite of -3 is 3.
x=\frac{3±9}{12}
Multiply 2 times 6.
x=\frac{12}{12}
Now solve the equation x=\frac{3±9}{12} when ± is plus. Add 3 to 9.
x=1
Divide 12 by 12.
x=-\frac{6}{12}
Now solve the equation x=\frac{3±9}{12} when ± is minus. Subtract 9 from 3.
x=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
6x^{2}-3x-3=6\left(x-1\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -\frac{1}{2} for x_{2}.
6x^{2}-3x-3=6\left(x-1\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}-3x-3=6\left(x-1\right)\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-3x-3=3\left(x-1\right)\left(2x+1\right)
Cancel out 2, the greatest common factor in 6 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}