Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(2x^{2}-x+10\right)
Factor out 3. Polynomial 2x^{2}-x+10 is not factored since it does not have any rational roots.
6x^{2}-3x+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\times 30}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\times 30}}{2\times 6}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\times 30}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-3\right)±\sqrt{9-720}}{2\times 6}
Multiply -24 times 30.
x=\frac{-\left(-3\right)±\sqrt{-711}}{2\times 6}
Add 9 to -720.
6x^{2}-3x+30
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.