Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3x^{2}-14x\right)
Factor out 2.
x\left(3x-14\right)
Consider 3x^{2}-14x. Factor out x.
2x\left(3x-14\right)
Rewrite the complete factored expression.
6x^{2}-28x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±28}{2\times 6}
Take the square root of \left(-28\right)^{2}.
x=\frac{28±28}{2\times 6}
The opposite of -28 is 28.
x=\frac{28±28}{12}
Multiply 2 times 6.
x=\frac{56}{12}
Now solve the equation x=\frac{28±28}{12} when ± is plus. Add 28 to 28.
x=\frac{14}{3}
Reduce the fraction \frac{56}{12} to lowest terms by extracting and canceling out 4.
x=\frac{0}{12}
Now solve the equation x=\frac{28±28}{12} when ± is minus. Subtract 28 from 28.
x=0
Divide 0 by 12.
6x^{2}-28x=6\left(x-\frac{14}{3}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{14}{3} for x_{1} and 0 for x_{2}.
6x^{2}-28x=6\times \frac{3x-14}{3}x
Subtract \frac{14}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-28x=2\left(3x-14\right)x
Cancel out 3, the greatest common factor in 6 and 3.