Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3x^{2}-13x-10\right)
Factor out 2.
a+b=-13 ab=3\left(-10\right)=-30
Consider 3x^{2}-13x-10. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-15 b=2
The solution is the pair that gives sum -13.
\left(3x^{2}-15x\right)+\left(2x-10\right)
Rewrite 3x^{2}-13x-10 as \left(3x^{2}-15x\right)+\left(2x-10\right).
3x\left(x-5\right)+2\left(x-5\right)
Factor out 3x in the first and 2 in the second group.
\left(x-5\right)\left(3x+2\right)
Factor out common term x-5 by using distributive property.
2\left(x-5\right)\left(3x+2\right)
Rewrite the complete factored expression.
6x^{2}-26x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 6\left(-20\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 6\left(-20\right)}}{2\times 6}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-24\left(-20\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-26\right)±\sqrt{676+480}}{2\times 6}
Multiply -24 times -20.
x=\frac{-\left(-26\right)±\sqrt{1156}}{2\times 6}
Add 676 to 480.
x=\frac{-\left(-26\right)±34}{2\times 6}
Take the square root of 1156.
x=\frac{26±34}{2\times 6}
The opposite of -26 is 26.
x=\frac{26±34}{12}
Multiply 2 times 6.
x=\frac{60}{12}
Now solve the equation x=\frac{26±34}{12} when ± is plus. Add 26 to 34.
x=5
Divide 60 by 12.
x=-\frac{8}{12}
Now solve the equation x=\frac{26±34}{12} when ± is minus. Subtract 34 from 26.
x=-\frac{2}{3}
Reduce the fraction \frac{-8}{12} to lowest terms by extracting and canceling out 4.
6x^{2}-26x-20=6\left(x-5\right)\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -\frac{2}{3} for x_{2}.
6x^{2}-26x-20=6\left(x-5\right)\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}-26x-20=6\left(x-5\right)\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-26x-20=2\left(x-5\right)\left(3x+2\right)
Cancel out 3, the greatest common factor in 6 and 3.