Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x^{2}-4x+3\right)
Factor out 6.
a+b=-4 ab=1\times 3=3
Consider x^{2}-4x+3. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-3x\right)+\left(-x+3\right)
Rewrite x^{2}-4x+3 as \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Factor out x in the first and -1 in the second group.
\left(x-3\right)\left(x-1\right)
Factor out common term x-3 by using distributive property.
6\left(x-3\right)\left(x-1\right)
Rewrite the complete factored expression.
6x^{2}-24x+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 6\times 18}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 6\times 18}}{2\times 6}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-24\times 18}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-24\right)±\sqrt{576-432}}{2\times 6}
Multiply -24 times 18.
x=\frac{-\left(-24\right)±\sqrt{144}}{2\times 6}
Add 576 to -432.
x=\frac{-\left(-24\right)±12}{2\times 6}
Take the square root of 144.
x=\frac{24±12}{2\times 6}
The opposite of -24 is 24.
x=\frac{24±12}{12}
Multiply 2 times 6.
x=\frac{36}{12}
Now solve the equation x=\frac{24±12}{12} when ± is plus. Add 24 to 12.
x=3
Divide 36 by 12.
x=\frac{12}{12}
Now solve the equation x=\frac{24±12}{12} when ± is minus. Subtract 12 from 24.
x=1
Divide 12 by 12.
6x^{2}-24x+18=6\left(x-3\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 1 for x_{2}.