Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-19 ab=6\times 3=18
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-18 b=-1
The solution is the pair that gives sum -19.
\left(6x^{2}-18x\right)+\left(-x+3\right)
Rewrite 6x^{2}-19x+3 as \left(6x^{2}-18x\right)+\left(-x+3\right).
6x\left(x-3\right)-\left(x-3\right)
Factor out 6x in the first and -1 in the second group.
\left(x-3\right)\left(6x-1\right)
Factor out common term x-3 by using distributive property.
6x^{2}-19x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 6\times 3}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 6\times 3}}{2\times 6}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-24\times 3}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-19\right)±\sqrt{361-72}}{2\times 6}
Multiply -24 times 3.
x=\frac{-\left(-19\right)±\sqrt{289}}{2\times 6}
Add 361 to -72.
x=\frac{-\left(-19\right)±17}{2\times 6}
Take the square root of 289.
x=\frac{19±17}{2\times 6}
The opposite of -19 is 19.
x=\frac{19±17}{12}
Multiply 2 times 6.
x=\frac{36}{12}
Now solve the equation x=\frac{19±17}{12} when ± is plus. Add 19 to 17.
x=3
Divide 36 by 12.
x=\frac{2}{12}
Now solve the equation x=\frac{19±17}{12} when ± is minus. Subtract 17 from 19.
x=\frac{1}{6}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
6x^{2}-19x+3=6\left(x-3\right)\left(x-\frac{1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and \frac{1}{6} for x_{2}.
6x^{2}-19x+3=6\left(x-3\right)\times \frac{6x-1}{6}
Subtract \frac{1}{6} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-19x+3=\left(x-3\right)\left(6x-1\right)
Cancel out 6, the greatest common factor in 6 and 6.