Factor
\left(2x-5\right)\left(3x-2\right)
Evaluate
\left(2x-5\right)\left(3x-2\right)
Graph
Share
Copied to clipboard
a+b=-19 ab=6\times 10=60
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-15 b=-4
The solution is the pair that gives sum -19.
\left(6x^{2}-15x\right)+\left(-4x+10\right)
Rewrite 6x^{2}-19x+10 as \left(6x^{2}-15x\right)+\left(-4x+10\right).
3x\left(2x-5\right)-2\left(2x-5\right)
Factor out 3x in the first and -2 in the second group.
\left(2x-5\right)\left(3x-2\right)
Factor out common term 2x-5 by using distributive property.
6x^{2}-19x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 6\times 10}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 6\times 10}}{2\times 6}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-24\times 10}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-19\right)±\sqrt{361-240}}{2\times 6}
Multiply -24 times 10.
x=\frac{-\left(-19\right)±\sqrt{121}}{2\times 6}
Add 361 to -240.
x=\frac{-\left(-19\right)±11}{2\times 6}
Take the square root of 121.
x=\frac{19±11}{2\times 6}
The opposite of -19 is 19.
x=\frac{19±11}{12}
Multiply 2 times 6.
x=\frac{30}{12}
Now solve the equation x=\frac{19±11}{12} when ± is plus. Add 19 to 11.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x=\frac{8}{12}
Now solve the equation x=\frac{19±11}{12} when ± is minus. Subtract 11 from 19.
x=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
6x^{2}-19x+10=6\left(x-\frac{5}{2}\right)\left(x-\frac{2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and \frac{2}{3} for x_{2}.
6x^{2}-19x+10=6\times \frac{2x-5}{2}\left(x-\frac{2}{3}\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-19x+10=6\times \frac{2x-5}{2}\times \frac{3x-2}{3}
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-19x+10=6\times \frac{\left(2x-5\right)\left(3x-2\right)}{2\times 3}
Multiply \frac{2x-5}{2} times \frac{3x-2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6x^{2}-19x+10=6\times \frac{\left(2x-5\right)\left(3x-2\right)}{6}
Multiply 2 times 3.
6x^{2}-19x+10=\left(2x-5\right)\left(3x-2\right)
Cancel out 6, the greatest common factor in 6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}