Solve for x
x = \frac{\sqrt{17} + 3}{2} \approx 3.561552813
x=\frac{3-\sqrt{17}}{2}\approx -0.561552813
Graph
Share
Copied to clipboard
6x^{2}-18x=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}-18x-12=12-12
Subtract 12 from both sides of the equation.
6x^{2}-18x-12=0
Subtracting 12 from itself leaves 0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 6\left(-12\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -18 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 6\left(-12\right)}}{2\times 6}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-24\left(-12\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-18\right)±\sqrt{324+288}}{2\times 6}
Multiply -24 times -12.
x=\frac{-\left(-18\right)±\sqrt{612}}{2\times 6}
Add 324 to 288.
x=\frac{-\left(-18\right)±6\sqrt{17}}{2\times 6}
Take the square root of 612.
x=\frac{18±6\sqrt{17}}{2\times 6}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{17}}{12}
Multiply 2 times 6.
x=\frac{6\sqrt{17}+18}{12}
Now solve the equation x=\frac{18±6\sqrt{17}}{12} when ± is plus. Add 18 to 6\sqrt{17}.
x=\frac{\sqrt{17}+3}{2}
Divide 18+6\sqrt{17} by 12.
x=\frac{18-6\sqrt{17}}{12}
Now solve the equation x=\frac{18±6\sqrt{17}}{12} when ± is minus. Subtract 6\sqrt{17} from 18.
x=\frac{3-\sqrt{17}}{2}
Divide 18-6\sqrt{17} by 12.
x=\frac{\sqrt{17}+3}{2} x=\frac{3-\sqrt{17}}{2}
The equation is now solved.
6x^{2}-18x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-18x}{6}=\frac{12}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{18}{6}\right)x=\frac{12}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-3x=\frac{12}{6}
Divide -18 by 6.
x^{2}-3x=2
Divide 12 by 6.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{17}{4}
Add 2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{17}}{2} x-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Simplify.
x=\frac{\sqrt{17}+3}{2} x=\frac{3-\sqrt{17}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}