Solve for x
x=\frac{1}{2}=0.5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
a+b=-13 ab=6\times 5=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-10 b=-3
The solution is the pair that gives sum -13.
\left(6x^{2}-10x\right)+\left(-3x+5\right)
Rewrite 6x^{2}-13x+5 as \left(6x^{2}-10x\right)+\left(-3x+5\right).
2x\left(3x-5\right)-\left(3x-5\right)
Factor out 2x in the first and -1 in the second group.
\left(3x-5\right)\left(2x-1\right)
Factor out common term 3x-5 by using distributive property.
x=\frac{5}{3} x=\frac{1}{2}
To find equation solutions, solve 3x-5=0 and 2x-1=0.
6x^{2}-13x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 5}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -13 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 5}}{2\times 6}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 5}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-13\right)±\sqrt{169-120}}{2\times 6}
Multiply -24 times 5.
x=\frac{-\left(-13\right)±\sqrt{49}}{2\times 6}
Add 169 to -120.
x=\frac{-\left(-13\right)±7}{2\times 6}
Take the square root of 49.
x=\frac{13±7}{2\times 6}
The opposite of -13 is 13.
x=\frac{13±7}{12}
Multiply 2 times 6.
x=\frac{20}{12}
Now solve the equation x=\frac{13±7}{12} when ± is plus. Add 13 to 7.
x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x=\frac{6}{12}
Now solve the equation x=\frac{13±7}{12} when ± is minus. Subtract 7 from 13.
x=\frac{1}{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
x=\frac{5}{3} x=\frac{1}{2}
The equation is now solved.
6x^{2}-13x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}-13x+5-5=-5
Subtract 5 from both sides of the equation.
6x^{2}-13x=-5
Subtracting 5 from itself leaves 0.
\frac{6x^{2}-13x}{6}=-\frac{5}{6}
Divide both sides by 6.
x^{2}-\frac{13}{6}x=-\frac{5}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=-\frac{5}{6}+\left(-\frac{13}{12}\right)^{2}
Divide -\frac{13}{6}, the coefficient of the x term, by 2 to get -\frac{13}{12}. Then add the square of -\frac{13}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-\frac{5}{6}+\frac{169}{144}
Square -\frac{13}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{49}{144}
Add -\frac{5}{6} to \frac{169}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{12}\right)^{2}=\frac{49}{144}
Factor x^{2}-\frac{13}{6}x+\frac{169}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Take the square root of both sides of the equation.
x-\frac{13}{12}=\frac{7}{12} x-\frac{13}{12}=-\frac{7}{12}
Simplify.
x=\frac{5}{3} x=\frac{1}{2}
Add \frac{13}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}