Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-10x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 6\left(-6\right)}}{2\times 6}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-24\left(-6\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-10\right)±\sqrt{100+144}}{2\times 6}
Multiply -24 times -6.
x=\frac{-\left(-10\right)±\sqrt{244}}{2\times 6}
Add 100 to 144.
x=\frac{-\left(-10\right)±2\sqrt{61}}{2\times 6}
Take the square root of 244.
x=\frac{10±2\sqrt{61}}{2\times 6}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{61}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{61}+10}{12}
Now solve the equation x=\frac{10±2\sqrt{61}}{12} when ± is plus. Add 10 to 2\sqrt{61}.
x=\frac{\sqrt{61}+5}{6}
Divide 10+2\sqrt{61} by 12.
x=\frac{10-2\sqrt{61}}{12}
Now solve the equation x=\frac{10±2\sqrt{61}}{12} when ± is minus. Subtract 2\sqrt{61} from 10.
x=\frac{5-\sqrt{61}}{6}
Divide 10-2\sqrt{61} by 12.
6x^{2}-10x-6=6\left(x-\frac{\sqrt{61}+5}{6}\right)\left(x-\frac{5-\sqrt{61}}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5+\sqrt{61}}{6} for x_{1} and \frac{5-\sqrt{61}}{6} for x_{2}.