Solve for x
x=-8
x=-6
Graph
Share
Copied to clipboard
6x^{2}+84x+280=-8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
6x^{2}+84x+280-\left(-8\right)=-8-\left(-8\right)
Add 8 to both sides of the equation.
6x^{2}+84x+280-\left(-8\right)=0
Subtracting -8 from itself leaves 0.
6x^{2}+84x+288=0
Subtract -8 from 280.
x=\frac{-84±\sqrt{84^{2}-4\times 6\times 288}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 84 for b, and 288 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-84±\sqrt{7056-4\times 6\times 288}}{2\times 6}
Square 84.
x=\frac{-84±\sqrt{7056-24\times 288}}{2\times 6}
Multiply -4 times 6.
x=\frac{-84±\sqrt{7056-6912}}{2\times 6}
Multiply -24 times 288.
x=\frac{-84±\sqrt{144}}{2\times 6}
Add 7056 to -6912.
x=\frac{-84±12}{2\times 6}
Take the square root of 144.
x=\frac{-84±12}{12}
Multiply 2 times 6.
x=-\frac{72}{12}
Now solve the equation x=\frac{-84±12}{12} when ± is plus. Add -84 to 12.
x=-6
Divide -72 by 12.
x=-\frac{96}{12}
Now solve the equation x=\frac{-84±12}{12} when ± is minus. Subtract 12 from -84.
x=-8
Divide -96 by 12.
x=-6 x=-8
The equation is now solved.
6x^{2}+84x+280=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+84x+280-280=-8-280
Subtract 280 from both sides of the equation.
6x^{2}+84x=-8-280
Subtracting 280 from itself leaves 0.
6x^{2}+84x=-288
Subtract 280 from -8.
\frac{6x^{2}+84x}{6}=-\frac{288}{6}
Divide both sides by 6.
x^{2}+\frac{84}{6}x=-\frac{288}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+14x=-\frac{288}{6}
Divide 84 by 6.
x^{2}+14x=-48
Divide -288 by 6.
x^{2}+14x+7^{2}=-48+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=-48+49
Square 7.
x^{2}+14x+49=1
Add -48 to 49.
\left(x+7\right)^{2}=1
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+7=1 x+7=-1
Simplify.
x=-6 x=-8
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}