Factor
6\left(x-\frac{-\sqrt{13}-1}{2}\right)\left(x-\frac{\sqrt{13}-1}{2}\right)
Evaluate
6\left(x^{2}+x-3\right)
Graph
Share
Copied to clipboard
6x^{2}+6x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 6\left(-18\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 6\left(-18\right)}}{2\times 6}
Square 6.
x=\frac{-6±\sqrt{36-24\left(-18\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-6±\sqrt{36+432}}{2\times 6}
Multiply -24 times -18.
x=\frac{-6±\sqrt{468}}{2\times 6}
Add 36 to 432.
x=\frac{-6±6\sqrt{13}}{2\times 6}
Take the square root of 468.
x=\frac{-6±6\sqrt{13}}{12}
Multiply 2 times 6.
x=\frac{6\sqrt{13}-6}{12}
Now solve the equation x=\frac{-6±6\sqrt{13}}{12} when ± is plus. Add -6 to 6\sqrt{13}.
x=\frac{\sqrt{13}-1}{2}
Divide -6+6\sqrt{13} by 12.
x=\frac{-6\sqrt{13}-6}{12}
Now solve the equation x=\frac{-6±6\sqrt{13}}{12} when ± is minus. Subtract 6\sqrt{13} from -6.
x=\frac{-\sqrt{13}-1}{2}
Divide -6-6\sqrt{13} by 12.
6x^{2}+6x-18=6\left(x-\frac{\sqrt{13}-1}{2}\right)\left(x-\frac{-\sqrt{13}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{13}}{2} for x_{1} and \frac{-1-\sqrt{13}}{2} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}