Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+6x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 6\left(-18\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 6\left(-18\right)}}{2\times 6}
Square 6.
x=\frac{-6±\sqrt{36-24\left(-18\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-6±\sqrt{36+432}}{2\times 6}
Multiply -24 times -18.
x=\frac{-6±\sqrt{468}}{2\times 6}
Add 36 to 432.
x=\frac{-6±6\sqrt{13}}{2\times 6}
Take the square root of 468.
x=\frac{-6±6\sqrt{13}}{12}
Multiply 2 times 6.
x=\frac{6\sqrt{13}-6}{12}
Now solve the equation x=\frac{-6±6\sqrt{13}}{12} when ± is plus. Add -6 to 6\sqrt{13}.
x=\frac{\sqrt{13}-1}{2}
Divide -6+6\sqrt{13} by 12.
x=\frac{-6\sqrt{13}-6}{12}
Now solve the equation x=\frac{-6±6\sqrt{13}}{12} when ± is minus. Subtract 6\sqrt{13} from -6.
x=\frac{-\sqrt{13}-1}{2}
Divide -6-6\sqrt{13} by 12.
6x^{2}+6x-18=6\left(x-\frac{\sqrt{13}-1}{2}\right)\left(x-\frac{-\sqrt{13}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{13}}{2} for x_{1} and \frac{-1-\sqrt{13}}{2} for x_{2}.