Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+500x-1665=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-500±\sqrt{500^{2}-4\times 6\left(-1665\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-500±\sqrt{250000-4\times 6\left(-1665\right)}}{2\times 6}
Square 500.
x=\frac{-500±\sqrt{250000-24\left(-1665\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-500±\sqrt{250000+39960}}{2\times 6}
Multiply -24 times -1665.
x=\frac{-500±\sqrt{289960}}{2\times 6}
Add 250000 to 39960.
x=\frac{-500±2\sqrt{72490}}{2\times 6}
Take the square root of 289960.
x=\frac{-500±2\sqrt{72490}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{72490}-500}{12}
Now solve the equation x=\frac{-500±2\sqrt{72490}}{12} when ± is plus. Add -500 to 2\sqrt{72490}.
x=\frac{\sqrt{72490}}{6}-\frac{125}{3}
Divide -500+2\sqrt{72490} by 12.
x=\frac{-2\sqrt{72490}-500}{12}
Now solve the equation x=\frac{-500±2\sqrt{72490}}{12} when ± is minus. Subtract 2\sqrt{72490} from -500.
x=-\frac{\sqrt{72490}}{6}-\frac{125}{3}
Divide -500-2\sqrt{72490} by 12.
6x^{2}+500x-1665=6\left(x-\left(\frac{\sqrt{72490}}{6}-\frac{125}{3}\right)\right)\left(x-\left(-\frac{\sqrt{72490}}{6}-\frac{125}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{125}{3}+\frac{\sqrt{72490}}{6} for x_{1} and -\frac{125}{3}-\frac{\sqrt{72490}}{6} for x_{2}.