Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+4x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-3\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 6\left(-3\right)}}{2\times 6}
Square 4.
x=\frac{-4±\sqrt{16-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-4±\sqrt{16+72}}{2\times 6}
Multiply -24 times -3.
x=\frac{-4±\sqrt{88}}{2\times 6}
Add 16 to 72.
x=\frac{-4±2\sqrt{22}}{2\times 6}
Take the square root of 88.
x=\frac{-4±2\sqrt{22}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{22}-4}{12}
Now solve the equation x=\frac{-4±2\sqrt{22}}{12} when ± is plus. Add -4 to 2\sqrt{22}.
x=\frac{\sqrt{22}}{6}-\frac{1}{3}
Divide -4+2\sqrt{22} by 12.
x=\frac{-2\sqrt{22}-4}{12}
Now solve the equation x=\frac{-4±2\sqrt{22}}{12} when ± is minus. Subtract 2\sqrt{22} from -4.
x=-\frac{\sqrt{22}}{6}-\frac{1}{3}
Divide -4-2\sqrt{22} by 12.
6x^{2}+4x-3=6\left(x-\left(\frac{\sqrt{22}}{6}-\frac{1}{3}\right)\right)\left(x-\left(-\frac{\sqrt{22}}{6}-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{3}+\frac{\sqrt{22}}{6} for x_{1} and -\frac{1}{3}-\frac{\sqrt{22}}{6} for x_{2}.