Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+4x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-24\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 4 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 6\left(-24\right)}}{2\times 6}
Square 4.
x=\frac{-4±\sqrt{16-24\left(-24\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-4±\sqrt{16+576}}{2\times 6}
Multiply -24 times -24.
x=\frac{-4±\sqrt{592}}{2\times 6}
Add 16 to 576.
x=\frac{-4±4\sqrt{37}}{2\times 6}
Take the square root of 592.
x=\frac{-4±4\sqrt{37}}{12}
Multiply 2 times 6.
x=\frac{4\sqrt{37}-4}{12}
Now solve the equation x=\frac{-4±4\sqrt{37}}{12} when ± is plus. Add -4 to 4\sqrt{37}.
x=\frac{\sqrt{37}-1}{3}
Divide -4+4\sqrt{37} by 12.
x=\frac{-4\sqrt{37}-4}{12}
Now solve the equation x=\frac{-4±4\sqrt{37}}{12} when ± is minus. Subtract 4\sqrt{37} from -4.
x=\frac{-\sqrt{37}-1}{3}
Divide -4-4\sqrt{37} by 12.
x=\frac{\sqrt{37}-1}{3} x=\frac{-\sqrt{37}-1}{3}
The equation is now solved.
6x^{2}+4x-24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+4x-24-\left(-24\right)=-\left(-24\right)
Add 24 to both sides of the equation.
6x^{2}+4x=-\left(-24\right)
Subtracting -24 from itself leaves 0.
6x^{2}+4x=24
Subtract -24 from 0.
\frac{6x^{2}+4x}{6}=\frac{24}{6}
Divide both sides by 6.
x^{2}+\frac{4}{6}x=\frac{24}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{2}{3}x=\frac{24}{6}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{2}{3}x=4
Divide 24 by 6.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=4+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=4+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{37}{9}
Add 4 to \frac{1}{9}.
\left(x+\frac{1}{3}\right)^{2}=\frac{37}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{37}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{37}}{3} x+\frac{1}{3}=-\frac{\sqrt{37}}{3}
Simplify.
x=\frac{\sqrt{37}-1}{3} x=\frac{-\sqrt{37}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.