Solve for x (complex solution)
x=\frac{\sqrt{15}i}{12}-\frac{1}{4}\approx -0.25+0.322748612i
x=-\frac{\sqrt{15}i}{12}-\frac{1}{4}\approx -0.25-0.322748612i
Graph
Share
Copied to clipboard
6x^{2}+3x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 6}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 6}}{2\times 6}
Square 3.
x=\frac{-3±\sqrt{9-24}}{2\times 6}
Multiply -4 times 6.
x=\frac{-3±\sqrt{-15}}{2\times 6}
Add 9 to -24.
x=\frac{-3±\sqrt{15}i}{2\times 6}
Take the square root of -15.
x=\frac{-3±\sqrt{15}i}{12}
Multiply 2 times 6.
x=\frac{-3+\sqrt{15}i}{12}
Now solve the equation x=\frac{-3±\sqrt{15}i}{12} when ± is plus. Add -3 to i\sqrt{15}.
x=\frac{\sqrt{15}i}{12}-\frac{1}{4}
Divide -3+i\sqrt{15} by 12.
x=\frac{-\sqrt{15}i-3}{12}
Now solve the equation x=\frac{-3±\sqrt{15}i}{12} when ± is minus. Subtract i\sqrt{15} from -3.
x=-\frac{\sqrt{15}i}{12}-\frac{1}{4}
Divide -3-i\sqrt{15} by 12.
x=\frac{\sqrt{15}i}{12}-\frac{1}{4} x=-\frac{\sqrt{15}i}{12}-\frac{1}{4}
The equation is now solved.
6x^{2}+3x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+3x+1-1=-1
Subtract 1 from both sides of the equation.
6x^{2}+3x=-1
Subtracting 1 from itself leaves 0.
\frac{6x^{2}+3x}{6}=-\frac{1}{6}
Divide both sides by 6.
x^{2}+\frac{3}{6}x=-\frac{1}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{1}{2}x=-\frac{1}{6}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{1}{6}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{1}{6}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{5}{48}
Add -\frac{1}{6} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{5}{48}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{5}{48}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{15}i}{12} x+\frac{1}{4}=-\frac{\sqrt{15}i}{12}
Simplify.
x=\frac{\sqrt{15}i}{12}-\frac{1}{4} x=-\frac{\sqrt{15}i}{12}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}