Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=37 ab=6\times 6=36
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=1 b=36
The solution is the pair that gives sum 37.
\left(6x^{2}+x\right)+\left(36x+6\right)
Rewrite 6x^{2}+37x+6 as \left(6x^{2}+x\right)+\left(36x+6\right).
x\left(6x+1\right)+6\left(6x+1\right)
Factor out x in the first and 6 in the second group.
\left(6x+1\right)\left(x+6\right)
Factor out common term 6x+1 by using distributive property.
6x^{2}+37x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-37±\sqrt{37^{2}-4\times 6\times 6}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-37±\sqrt{1369-4\times 6\times 6}}{2\times 6}
Square 37.
x=\frac{-37±\sqrt{1369-24\times 6}}{2\times 6}
Multiply -4 times 6.
x=\frac{-37±\sqrt{1369-144}}{2\times 6}
Multiply -24 times 6.
x=\frac{-37±\sqrt{1225}}{2\times 6}
Add 1369 to -144.
x=\frac{-37±35}{2\times 6}
Take the square root of 1225.
x=\frac{-37±35}{12}
Multiply 2 times 6.
x=-\frac{2}{12}
Now solve the equation x=\frac{-37±35}{12} when ± is plus. Add -37 to 35.
x=-\frac{1}{6}
Reduce the fraction \frac{-2}{12} to lowest terms by extracting and canceling out 2.
x=-\frac{72}{12}
Now solve the equation x=\frac{-37±35}{12} when ± is minus. Subtract 35 from -37.
x=-6
Divide -72 by 12.
6x^{2}+37x+6=6\left(x-\left(-\frac{1}{6}\right)\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{6} for x_{1} and -6 for x_{2}.
6x^{2}+37x+6=6\left(x+\frac{1}{6}\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}+37x+6=6\times \frac{6x+1}{6}\left(x+6\right)
Add \frac{1}{6} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+37x+6=\left(6x+1\right)\left(x+6\right)
Cancel out 6, the greatest common factor in 6 and 6.