Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+25x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\times 6\left(-15\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{625-4\times 6\left(-15\right)}}{2\times 6}
Square 25.
x=\frac{-25±\sqrt{625-24\left(-15\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-25±\sqrt{625+360}}{2\times 6}
Multiply -24 times -15.
x=\frac{-25±\sqrt{985}}{2\times 6}
Add 625 to 360.
x=\frac{-25±\sqrt{985}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{985}-25}{12}
Now solve the equation x=\frac{-25±\sqrt{985}}{12} when ± is plus. Add -25 to \sqrt{985}.
x=\frac{-\sqrt{985}-25}{12}
Now solve the equation x=\frac{-25±\sqrt{985}}{12} when ± is minus. Subtract \sqrt{985} from -25.
6x^{2}+25x-15=6\left(x-\frac{\sqrt{985}-25}{12}\right)\left(x-\frac{-\sqrt{985}-25}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-25+\sqrt{985}}{12} for x_{1} and \frac{-25-\sqrt{985}}{12} for x_{2}.