Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+21x+17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{21^{2}-4\times 6\times 17}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 21 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\times 6\times 17}}{2\times 6}
Square 21.
x=\frac{-21±\sqrt{441-24\times 17}}{2\times 6}
Multiply -4 times 6.
x=\frac{-21±\sqrt{441-408}}{2\times 6}
Multiply -24 times 17.
x=\frac{-21±\sqrt{33}}{2\times 6}
Add 441 to -408.
x=\frac{-21±\sqrt{33}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{33}-21}{12}
Now solve the equation x=\frac{-21±\sqrt{33}}{12} when ± is plus. Add -21 to \sqrt{33}.
x=\frac{\sqrt{33}}{12}-\frac{7}{4}
Divide -21+\sqrt{33} by 12.
x=\frac{-\sqrt{33}-21}{12}
Now solve the equation x=\frac{-21±\sqrt{33}}{12} when ± is minus. Subtract \sqrt{33} from -21.
x=-\frac{\sqrt{33}}{12}-\frac{7}{4}
Divide -21-\sqrt{33} by 12.
x=\frac{\sqrt{33}}{12}-\frac{7}{4} x=-\frac{\sqrt{33}}{12}-\frac{7}{4}
The equation is now solved.
6x^{2}+21x+17=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+21x+17-17=-17
Subtract 17 from both sides of the equation.
6x^{2}+21x=-17
Subtracting 17 from itself leaves 0.
\frac{6x^{2}+21x}{6}=-\frac{17}{6}
Divide both sides by 6.
x^{2}+\frac{21}{6}x=-\frac{17}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{7}{2}x=-\frac{17}{6}
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{17}{6}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{17}{6}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{11}{48}
Add -\frac{17}{6} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{11}{48}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{11}{48}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{33}}{12} x+\frac{7}{4}=-\frac{\sqrt{33}}{12}
Simplify.
x=\frac{\sqrt{33}}{12}-\frac{7}{4} x=-\frac{\sqrt{33}}{12}-\frac{7}{4}
Subtract \frac{7}{4} from both sides of the equation.