Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+20x-420=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 6\left(-420\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\times 6\left(-420\right)}}{2\times 6}
Square 20.
x=\frac{-20±\sqrt{400-24\left(-420\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-20±\sqrt{400+10080}}{2\times 6}
Multiply -24 times -420.
x=\frac{-20±\sqrt{10480}}{2\times 6}
Add 400 to 10080.
x=\frac{-20±4\sqrt{655}}{2\times 6}
Take the square root of 10480.
x=\frac{-20±4\sqrt{655}}{12}
Multiply 2 times 6.
x=\frac{4\sqrt{655}-20}{12}
Now solve the equation x=\frac{-20±4\sqrt{655}}{12} when ± is plus. Add -20 to 4\sqrt{655}.
x=\frac{\sqrt{655}-5}{3}
Divide -20+4\sqrt{655} by 12.
x=\frac{-4\sqrt{655}-20}{12}
Now solve the equation x=\frac{-20±4\sqrt{655}}{12} when ± is minus. Subtract 4\sqrt{655} from -20.
x=\frac{-\sqrt{655}-5}{3}
Divide -20-4\sqrt{655} by 12.
6x^{2}+20x-420=6\left(x-\frac{\sqrt{655}-5}{3}\right)\left(x-\frac{-\sqrt{655}-5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{655}}{3} for x_{1} and \frac{-5-\sqrt{655}}{3} for x_{2}.