Factor
\left(2x-3\right)\left(3x+5\right)
Evaluate
6x^{2}+x-15
Graph
Share
Copied to clipboard
a+b=1 ab=6\left(-15\right)=-90
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-9 b=10
The solution is the pair that gives sum 1.
\left(6x^{2}-9x\right)+\left(10x-15\right)
Rewrite 6x^{2}+x-15 as \left(6x^{2}-9x\right)+\left(10x-15\right).
3x\left(2x-3\right)+5\left(2x-3\right)
Factor out 3x in the first and 5 in the second group.
\left(2x-3\right)\left(3x+5\right)
Factor out common term 2x-3 by using distributive property.
6x^{2}+x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-15\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\times 6\left(-15\right)}}{2\times 6}
Square 1.
x=\frac{-1±\sqrt{1-24\left(-15\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-1±\sqrt{1+360}}{2\times 6}
Multiply -24 times -15.
x=\frac{-1±\sqrt{361}}{2\times 6}
Add 1 to 360.
x=\frac{-1±19}{2\times 6}
Take the square root of 361.
x=\frac{-1±19}{12}
Multiply 2 times 6.
x=\frac{18}{12}
Now solve the equation x=\frac{-1±19}{12} when ± is plus. Add -1 to 19.
x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{20}{12}
Now solve the equation x=\frac{-1±19}{12} when ± is minus. Subtract 19 from -1.
x=-\frac{5}{3}
Reduce the fraction \frac{-20}{12} to lowest terms by extracting and canceling out 4.
6x^{2}+x-15=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -\frac{5}{3} for x_{2}.
6x^{2}+x-15=6\left(x-\frac{3}{2}\right)\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}+x-15=6\times \frac{2x-3}{2}\left(x+\frac{5}{3}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+x-15=6\times \frac{2x-3}{2}\times \frac{3x+5}{3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}+x-15=6\times \frac{\left(2x-3\right)\left(3x+5\right)}{2\times 3}
Multiply \frac{2x-3}{2} times \frac{3x+5}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6x^{2}+x-15=6\times \frac{\left(2x-3\right)\left(3x+5\right)}{6}
Multiply 2 times 3.
6x^{2}+x-15=\left(2x-3\right)\left(3x+5\right)
Cancel out 6, the greatest common factor in 6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}