Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}=19-18
Subtract 18 from both sides.
6x^{2}=1
Subtract 18 from 19 to get 1.
x^{2}=\frac{1}{6}
Divide both sides by 6.
x=\frac{\sqrt{6}}{6} x=-\frac{\sqrt{6}}{6}
Take the square root of both sides of the equation.
6x^{2}+18-19=0
Subtract 19 from both sides.
6x^{2}-1=0
Subtract 19 from 18 to get -1.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-1\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-1\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-1\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{24}}{2\times 6}
Multiply -24 times -1.
x=\frac{0±2\sqrt{6}}{2\times 6}
Take the square root of 24.
x=\frac{0±2\sqrt{6}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{6}}{6}
Now solve the equation x=\frac{0±2\sqrt{6}}{12} when ± is plus.
x=-\frac{\sqrt{6}}{6}
Now solve the equation x=\frac{0±2\sqrt{6}}{12} when ± is minus.
x=\frac{\sqrt{6}}{6} x=-\frac{\sqrt{6}}{6}
The equation is now solved.