Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+11x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 6\left(-9\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\times 6\left(-9\right)}}{2\times 6}
Square 11.
x=\frac{-11±\sqrt{121-24\left(-9\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-11±\sqrt{121+216}}{2\times 6}
Multiply -24 times -9.
x=\frac{-11±\sqrt{337}}{2\times 6}
Add 121 to 216.
x=\frac{-11±\sqrt{337}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{337}-11}{12}
Now solve the equation x=\frac{-11±\sqrt{337}}{12} when ± is plus. Add -11 to \sqrt{337}.
x=\frac{-\sqrt{337}-11}{12}
Now solve the equation x=\frac{-11±\sqrt{337}}{12} when ± is minus. Subtract \sqrt{337} from -11.
6x^{2}+11x-9=6\left(x-\frac{\sqrt{337}-11}{12}\right)\left(x-\frac{-\sqrt{337}-11}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{337}}{12} for x_{1} and \frac{-11-\sqrt{337}}{12} for x_{2}.