Solve for m
m=\frac{\sqrt{241}-5}{12}\approx 0.877014558
m=\frac{-\sqrt{241}-5}{12}\approx -1.710347891
Share
Copied to clipboard
6m^{2}+5m-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-5±\sqrt{5^{2}-4\times 6\left(-9\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 5 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\times 6\left(-9\right)}}{2\times 6}
Square 5.
m=\frac{-5±\sqrt{25-24\left(-9\right)}}{2\times 6}
Multiply -4 times 6.
m=\frac{-5±\sqrt{25+216}}{2\times 6}
Multiply -24 times -9.
m=\frac{-5±\sqrt{241}}{2\times 6}
Add 25 to 216.
m=\frac{-5±\sqrt{241}}{12}
Multiply 2 times 6.
m=\frac{\sqrt{241}-5}{12}
Now solve the equation m=\frac{-5±\sqrt{241}}{12} when ± is plus. Add -5 to \sqrt{241}.
m=\frac{-\sqrt{241}-5}{12}
Now solve the equation m=\frac{-5±\sqrt{241}}{12} when ± is minus. Subtract \sqrt{241} from -5.
m=\frac{\sqrt{241}-5}{12} m=\frac{-\sqrt{241}-5}{12}
The equation is now solved.
6m^{2}+5m-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6m^{2}+5m-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
6m^{2}+5m=-\left(-9\right)
Subtracting -9 from itself leaves 0.
6m^{2}+5m=9
Subtract -9 from 0.
\frac{6m^{2}+5m}{6}=\frac{9}{6}
Divide both sides by 6.
m^{2}+\frac{5}{6}m=\frac{9}{6}
Dividing by 6 undoes the multiplication by 6.
m^{2}+\frac{5}{6}m=\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
m^{2}+\frac{5}{6}m+\left(\frac{5}{12}\right)^{2}=\frac{3}{2}+\left(\frac{5}{12}\right)^{2}
Divide \frac{5}{6}, the coefficient of the x term, by 2 to get \frac{5}{12}. Then add the square of \frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{5}{6}m+\frac{25}{144}=\frac{3}{2}+\frac{25}{144}
Square \frac{5}{12} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{5}{6}m+\frac{25}{144}=\frac{241}{144}
Add \frac{3}{2} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{5}{12}\right)^{2}=\frac{241}{144}
Factor m^{2}+\frac{5}{6}m+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{5}{12}\right)^{2}}=\sqrt{\frac{241}{144}}
Take the square root of both sides of the equation.
m+\frac{5}{12}=\frac{\sqrt{241}}{12} m+\frac{5}{12}=-\frac{\sqrt{241}}{12}
Simplify.
m=\frac{\sqrt{241}-5}{12} m=\frac{-\sqrt{241}-5}{12}
Subtract \frac{5}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}