Factor
6\left(k-8\right)\left(k+4\right)
Evaluate
6\left(k-8\right)\left(k+4\right)
Share
Copied to clipboard
6\left(k^{2}-4k-32\right)
Factor out 6.
a+b=-4 ab=1\left(-32\right)=-32
Consider k^{2}-4k-32. Factor the expression by grouping. First, the expression needs to be rewritten as k^{2}+ak+bk-32. To find a and b, set up a system to be solved.
1,-32 2,-16 4,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -32.
1-32=-31 2-16=-14 4-8=-4
Calculate the sum for each pair.
a=-8 b=4
The solution is the pair that gives sum -4.
\left(k^{2}-8k\right)+\left(4k-32\right)
Rewrite k^{2}-4k-32 as \left(k^{2}-8k\right)+\left(4k-32\right).
k\left(k-8\right)+4\left(k-8\right)
Factor out k in the first and 4 in the second group.
\left(k-8\right)\left(k+4\right)
Factor out common term k-8 by using distributive property.
6\left(k-8\right)\left(k+4\right)
Rewrite the complete factored expression.
6k^{2}-24k-192=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 6\left(-192\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-24\right)±\sqrt{576-4\times 6\left(-192\right)}}{2\times 6}
Square -24.
k=\frac{-\left(-24\right)±\sqrt{576-24\left(-192\right)}}{2\times 6}
Multiply -4 times 6.
k=\frac{-\left(-24\right)±\sqrt{576+4608}}{2\times 6}
Multiply -24 times -192.
k=\frac{-\left(-24\right)±\sqrt{5184}}{2\times 6}
Add 576 to 4608.
k=\frac{-\left(-24\right)±72}{2\times 6}
Take the square root of 5184.
k=\frac{24±72}{2\times 6}
The opposite of -24 is 24.
k=\frac{24±72}{12}
Multiply 2 times 6.
k=\frac{96}{12}
Now solve the equation k=\frac{24±72}{12} when ± is plus. Add 24 to 72.
k=8
Divide 96 by 12.
k=-\frac{48}{12}
Now solve the equation k=\frac{24±72}{12} when ± is minus. Subtract 72 from 24.
k=-4
Divide -48 by 12.
6k^{2}-24k-192=6\left(k-8\right)\left(k-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8 for x_{1} and -4 for x_{2}.
6k^{2}-24k-192=6\left(k-8\right)\left(k+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}