Solve for x
x=\frac{\sqrt{321}}{12}-\frac{1}{4}\approx 1.243039406
x=-\frac{\sqrt{321}}{12}-\frac{1}{4}\approx -1.743039406
Graph
Share
Copied to clipboard
6\left(x^{2}+2x+1\right)+2\left(x-1\right)\left(x^{2}+x+1\right)-2\left(x-1\right)^{3}=32
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
6x^{2}+12x+6+2\left(x-1\right)\left(x^{2}+x+1\right)-2\left(x-1\right)^{3}=32
Use the distributive property to multiply 6 by x^{2}+2x+1.
6x^{2}+12x+6+\left(2x-2\right)\left(x^{2}+x+1\right)-2\left(x-1\right)^{3}=32
Use the distributive property to multiply 2 by x-1.
6x^{2}+12x+6+2x^{3}-2-2\left(x-1\right)^{3}=32
Use the distributive property to multiply 2x-2 by x^{2}+x+1 and combine like terms.
6x^{2}+12x+4+2x^{3}-2\left(x-1\right)^{3}=32
Subtract 2 from 6 to get 4.
6x^{2}+12x+4+2x^{3}-2\left(x^{3}-3x^{2}+3x-1\right)=32
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
6x^{2}+12x+4+2x^{3}-2x^{3}+6x^{2}-6x+2=32
Use the distributive property to multiply -2 by x^{3}-3x^{2}+3x-1.
6x^{2}+12x+4+6x^{2}-6x+2=32
Combine 2x^{3} and -2x^{3} to get 0.
12x^{2}+12x+4-6x+2=32
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}+6x+4+2=32
Combine 12x and -6x to get 6x.
12x^{2}+6x+6=32
Add 4 and 2 to get 6.
12x^{2}+6x+6-32=0
Subtract 32 from both sides.
12x^{2}+6x-26=0
Subtract 32 from 6 to get -26.
x=\frac{-6±\sqrt{6^{2}-4\times 12\left(-26\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 6 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 12\left(-26\right)}}{2\times 12}
Square 6.
x=\frac{-6±\sqrt{36-48\left(-26\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-6±\sqrt{36+1248}}{2\times 12}
Multiply -48 times -26.
x=\frac{-6±\sqrt{1284}}{2\times 12}
Add 36 to 1248.
x=\frac{-6±2\sqrt{321}}{2\times 12}
Take the square root of 1284.
x=\frac{-6±2\sqrt{321}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{321}-6}{24}
Now solve the equation x=\frac{-6±2\sqrt{321}}{24} when ± is plus. Add -6 to 2\sqrt{321}.
x=\frac{\sqrt{321}}{12}-\frac{1}{4}
Divide -6+2\sqrt{321} by 24.
x=\frac{-2\sqrt{321}-6}{24}
Now solve the equation x=\frac{-6±2\sqrt{321}}{24} when ± is minus. Subtract 2\sqrt{321} from -6.
x=-\frac{\sqrt{321}}{12}-\frac{1}{4}
Divide -6-2\sqrt{321} by 24.
x=\frac{\sqrt{321}}{12}-\frac{1}{4} x=-\frac{\sqrt{321}}{12}-\frac{1}{4}
The equation is now solved.
6\left(x^{2}+2x+1\right)+2\left(x-1\right)\left(x^{2}+x+1\right)-2\left(x-1\right)^{3}=32
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
6x^{2}+12x+6+2\left(x-1\right)\left(x^{2}+x+1\right)-2\left(x-1\right)^{3}=32
Use the distributive property to multiply 6 by x^{2}+2x+1.
6x^{2}+12x+6+\left(2x-2\right)\left(x^{2}+x+1\right)-2\left(x-1\right)^{3}=32
Use the distributive property to multiply 2 by x-1.
6x^{2}+12x+6+2x^{3}-2-2\left(x-1\right)^{3}=32
Use the distributive property to multiply 2x-2 by x^{2}+x+1 and combine like terms.
6x^{2}+12x+4+2x^{3}-2\left(x-1\right)^{3}=32
Subtract 2 from 6 to get 4.
6x^{2}+12x+4+2x^{3}-2\left(x^{3}-3x^{2}+3x-1\right)=32
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
6x^{2}+12x+4+2x^{3}-2x^{3}+6x^{2}-6x+2=32
Use the distributive property to multiply -2 by x^{3}-3x^{2}+3x-1.
6x^{2}+12x+4+6x^{2}-6x+2=32
Combine 2x^{3} and -2x^{3} to get 0.
12x^{2}+12x+4-6x+2=32
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}+6x+4+2=32
Combine 12x and -6x to get 6x.
12x^{2}+6x+6=32
Add 4 and 2 to get 6.
12x^{2}+6x=32-6
Subtract 6 from both sides.
12x^{2}+6x=26
Subtract 6 from 32 to get 26.
\frac{12x^{2}+6x}{12}=\frac{26}{12}
Divide both sides by 12.
x^{2}+\frac{6}{12}x=\frac{26}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{2}x=\frac{26}{12}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{2}x=\frac{13}{6}
Reduce the fraction \frac{26}{12} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{13}{6}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{13}{6}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{107}{48}
Add \frac{13}{6} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{107}{48}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{107}{48}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{321}}{12} x+\frac{1}{4}=-\frac{\sqrt{321}}{12}
Simplify.
x=\frac{\sqrt{321}}{12}-\frac{1}{4} x=-\frac{\sqrt{321}}{12}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}