Evaluate
\frac{31}{15}\approx 2.066666667
Factor
\frac{31}{3 \cdot 5} = 2\frac{1}{15} = 2.066666666666667
Share
Copied to clipboard
6\left(\frac{1}{9}+\frac{7}{30}\right)
Reduce the fraction \frac{2}{18} to lowest terms by extracting and canceling out 2.
6\left(\frac{10}{90}+\frac{21}{90}\right)
Least common multiple of 9 and 30 is 90. Convert \frac{1}{9} and \frac{7}{30} to fractions with denominator 90.
6\times \frac{10+21}{90}
Since \frac{10}{90} and \frac{21}{90} have the same denominator, add them by adding their numerators.
6\times \frac{31}{90}
Add 10 and 21 to get 31.
\frac{6\times 31}{90}
Express 6\times \frac{31}{90} as a single fraction.
\frac{186}{90}
Multiply 6 and 31 to get 186.
\frac{31}{15}
Reduce the fraction \frac{186}{90} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}