Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x^{2}-6x+9\right)=9-6x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
6x^{2}-36x+54=9-6x
Use the distributive property to multiply 6 by x^{2}-6x+9.
6x^{2}-36x+54-9=-6x
Subtract 9 from both sides.
6x^{2}-36x+45=-6x
Subtract 9 from 54 to get 45.
6x^{2}-36x+45+6x=0
Add 6x to both sides.
6x^{2}-30x+45=0
Combine -36x and 6x to get -30x.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 6\times 45}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -30 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 6\times 45}}{2\times 6}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-24\times 45}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-30\right)±\sqrt{900-1080}}{2\times 6}
Multiply -24 times 45.
x=\frac{-\left(-30\right)±\sqrt{-180}}{2\times 6}
Add 900 to -1080.
x=\frac{-\left(-30\right)±6\sqrt{5}i}{2\times 6}
Take the square root of -180.
x=\frac{30±6\sqrt{5}i}{2\times 6}
The opposite of -30 is 30.
x=\frac{30±6\sqrt{5}i}{12}
Multiply 2 times 6.
x=\frac{30+6\sqrt{5}i}{12}
Now solve the equation x=\frac{30±6\sqrt{5}i}{12} when ± is plus. Add 30 to 6i\sqrt{5}.
x=\frac{5+\sqrt{5}i}{2}
Divide 30+6i\sqrt{5} by 12.
x=\frac{-6\sqrt{5}i+30}{12}
Now solve the equation x=\frac{30±6\sqrt{5}i}{12} when ± is minus. Subtract 6i\sqrt{5} from 30.
x=\frac{-\sqrt{5}i+5}{2}
Divide 30-6i\sqrt{5} by 12.
x=\frac{5+\sqrt{5}i}{2} x=\frac{-\sqrt{5}i+5}{2}
The equation is now solved.
6\left(x^{2}-6x+9\right)=9-6x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
6x^{2}-36x+54=9-6x
Use the distributive property to multiply 6 by x^{2}-6x+9.
6x^{2}-36x+54+6x=9
Add 6x to both sides.
6x^{2}-30x+54=9
Combine -36x and 6x to get -30x.
6x^{2}-30x=9-54
Subtract 54 from both sides.
6x^{2}-30x=-45
Subtract 54 from 9 to get -45.
\frac{6x^{2}-30x}{6}=-\frac{45}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{30}{6}\right)x=-\frac{45}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-5x=-\frac{45}{6}
Divide -30 by 6.
x^{2}-5x=-\frac{15}{2}
Reduce the fraction \frac{-45}{6} to lowest terms by extracting and canceling out 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{15}{2}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-\frac{15}{2}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{5}{4}
Add -\frac{15}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=-\frac{5}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{5}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{5}i}{2} x-\frac{5}{2}=-\frac{\sqrt{5}i}{2}
Simplify.
x=\frac{5+\sqrt{5}i}{2} x=\frac{-\sqrt{5}i+5}{2}
Add \frac{5}{2} to both sides of the equation.