Evaluate
\frac{1}{2}-\sqrt{2}\approx -0.914213562
Share
Copied to clipboard
6\times \left(\frac{\sqrt{3}}{3}\right)^{2}-\sqrt{3}\sin(60)-2\sin(45)
Get the value of \tan(30) from trigonometric values table.
6\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}-\sqrt{3}\sin(60)-2\sin(45)
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\sqrt{3}\sin(60)-2\sin(45)
Express 6\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} as a single fraction.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\sqrt{3}\times \frac{\sqrt{3}}{2}-2\sin(45)
Get the value of \sin(60) from trigonometric values table.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\frac{\sqrt{3}\sqrt{3}}{2}-2\sin(45)
Express \sqrt{3}\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\frac{3}{2}-2\sin(45)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{2\times 6\left(\sqrt{3}\right)^{2}}{18}-\frac{3\times 9}{18}-2\sin(45)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 2 is 18. Multiply \frac{6\left(\sqrt{3}\right)^{2}}{3^{2}} times \frac{2}{2}. Multiply \frac{3}{2} times \frac{9}{9}.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-2\sin(45)
Since \frac{2\times 6\left(\sqrt{3}\right)^{2}}{18} and \frac{3\times 9}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-2\times \frac{\sqrt{2}}{2}
Get the value of \sin(45) from trigonometric values table.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-\sqrt{2}
Cancel out 2 and 2.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-\frac{18\sqrt{2}}{18}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{18}{18}.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9-18\sqrt{2}}{18}
Since \frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18} and \frac{18\sqrt{2}}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{12\left(\sqrt{3}\right)^{2}-3\times 9}{18}-\sqrt{2}
Do the multiplications.
\frac{12\times 3-3\times 9}{18}-\sqrt{2}
The square of \sqrt{3} is 3.
\frac{36-3\times 9}{18}-\sqrt{2}
Multiply 12 and 3 to get 36.
\frac{36-27}{18}-\sqrt{2}
Multiply -3 and 9 to get -27.
\frac{9}{18}-\sqrt{2}
Subtract 27 from 36 to get 9.
\frac{1}{2}-\sqrt{2}
Reduce the fraction \frac{9}{18} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}