Solve for y
y=1
Graph
Share
Copied to clipboard
\left(6\sqrt{y+3}\right)^{2}=\left(14-2y\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{y+3}\right)^{2}=\left(14-2y\right)^{2}
Expand \left(6\sqrt{y+3}\right)^{2}.
36\left(\sqrt{y+3}\right)^{2}=\left(14-2y\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(y+3\right)=\left(14-2y\right)^{2}
Calculate \sqrt{y+3} to the power of 2 and get y+3.
36y+108=\left(14-2y\right)^{2}
Use the distributive property to multiply 36 by y+3.
36y+108=196-56y+4y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-2y\right)^{2}.
36y+108-196=-56y+4y^{2}
Subtract 196 from both sides.
36y-88=-56y+4y^{2}
Subtract 196 from 108 to get -88.
36y-88+56y=4y^{2}
Add 56y to both sides.
92y-88=4y^{2}
Combine 36y and 56y to get 92y.
92y-88-4y^{2}=0
Subtract 4y^{2} from both sides.
23y-22-y^{2}=0
Divide both sides by 4.
-y^{2}+23y-22=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=23 ab=-\left(-22\right)=22
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by-22. To find a and b, set up a system to be solved.
1,22 2,11
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 22.
1+22=23 2+11=13
Calculate the sum for each pair.
a=22 b=1
The solution is the pair that gives sum 23.
\left(-y^{2}+22y\right)+\left(y-22\right)
Rewrite -y^{2}+23y-22 as \left(-y^{2}+22y\right)+\left(y-22\right).
-y\left(y-22\right)+y-22
Factor out -y in -y^{2}+22y.
\left(y-22\right)\left(-y+1\right)
Factor out common term y-22 by using distributive property.
y=22 y=1
To find equation solutions, solve y-22=0 and -y+1=0.
6\sqrt{22+3}=14-2\times 22
Substitute 22 for y in the equation 6\sqrt{y+3}=14-2y.
30=-30
Simplify. The value y=22 does not satisfy the equation because the left and the right hand side have opposite signs.
6\sqrt{1+3}=14-2
Substitute 1 for y in the equation 6\sqrt{y+3}=14-2y.
12=12
Simplify. The value y=1 satisfies the equation.
y=1
Equation 6\sqrt{y+3}=14-2y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}