Solve for x
x=10
Graph
Share
Copied to clipboard
\left(6\sqrt{x-2}\right)^{2}=\left(4\sqrt{x+8}\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{x-2}\right)^{2}=\left(4\sqrt{x+8}\right)^{2}
Expand \left(6\sqrt{x-2}\right)^{2}.
36\left(\sqrt{x-2}\right)^{2}=\left(4\sqrt{x+8}\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(x-2\right)=\left(4\sqrt{x+8}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
36x-72=\left(4\sqrt{x+8}\right)^{2}
Use the distributive property to multiply 36 by x-2.
36x-72=4^{2}\left(\sqrt{x+8}\right)^{2}
Expand \left(4\sqrt{x+8}\right)^{2}.
36x-72=16\left(\sqrt{x+8}\right)^{2}
Calculate 4 to the power of 2 and get 16.
36x-72=16\left(x+8\right)
Calculate \sqrt{x+8} to the power of 2 and get x+8.
36x-72=16x+128
Use the distributive property to multiply 16 by x+8.
36x-72-16x=128
Subtract 16x from both sides.
20x-72=128
Combine 36x and -16x to get 20x.
20x=128+72
Add 72 to both sides.
20x=200
Add 128 and 72 to get 200.
x=\frac{200}{20}
Divide both sides by 20.
x=10
Divide 200 by 20 to get 10.
6\sqrt{10-2}=4\sqrt{10+8}
Substitute 10 for x in the equation 6\sqrt{x-2}=4\sqrt{x+8}.
12\times 2^{\frac{1}{2}}=12\times 2^{\frac{1}{2}}
Simplify. The value x=10 satisfies the equation.
x=10
Equation 6\sqrt{x-2}=4\sqrt{x+8} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}